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Abstract

Convection heat transfer especially Rayleigh-Bénard convection plays a significant role either in
nature or industry applications. Particularly, in industry, the instability of the Rayleigh-Bénard
convection process is important to see whether the quality of final goods is excellent or not.
Therefore, in this study linear stability theory has been performed to investigate the influence
of cubic temperature gradient and cubic concentration gradient on the onset of convection in a
double-diffusive micropolar fluid. By adopting the single-term Galerkin procedure, parameters
N1, N3, N5, andRs have been analyzed to investigate their influence on the onset of convection.
The results found that the coupling parameter N1 and micropolar heat conduction parameter
N5 will put the system in stable conditions. Meanwhile, the couple stress parameterN3 and so-
lutal Rayleigh number Rs will destabilize the system. The results also show that by increasing
the value of the solutal Rayleigh number Rs, the value of the critical Rayleigh number Rac will
decrease. By enclosing the micron-sized suspended particles, we can slow down the process of
Rayleigh-Bénard convection in double-diffusive micropolar fluids. It is possible to control the
process of the onset of Rayleigh-Bénard convection by selecting suitable non-uniform tempera-
ture and concentration gradient profiles.

Keywords: Rayleigh-Bénard convection; temperature gradient; concentration gradient; microp-
olar fluids; double-diffusive; single-term Galerkin technique.
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1 Introduction

The study of the dynamic behavior of the physical system in natural and industrial applica-
tions has been made in understanding the idea of convection in fluid over the past century and
continues to be a growth of interest in mathematical inspiration. Convection is the process that
combines advection and diffusion to move the cluster of molecules within fluids in a coordinated
manner. The difference in temperature leads to density variation in fluids which gives rise to natu-
ral convection where the convective motions produced by unstable density distributions in a fluid
such as in a thin horizontal layer of fluid, heated at the bottom and cooled at the upper surface have
been successfully studied theoretically and experimentally [3]. This phenomenon is also known
as Rayleigh-Bénard convection and Bénard-Marangoni convection.

In oceanography, warmth diffuses around 100 times more quickly than salt, thus the interac-
tion of two separate density gradients (such as temperature and salinity) with varying rates of
diffusion results in double-diffusive convection, which is important in the fluid dynamics phe-
nomenon. Double diffuse effects were firstly observed by [21] and explained the physical mecha-
nism responsible. Previous research discovered instability at the boundary between temperature-
stratified water and a denser fluid layer, but only a few researchers had yet understood the impor-
tance of double-diffusion. [22] demonstrated that when a tube is introduced vertically through
the junction between a layer of heated, salty water on top of a cool layer of fresh water, a perpetual
salt fountain be forming. The fountain continues to flow until the system is thoroughly combined.
salt fingers and diffusive convection are two examples of double-diffusive instability. [19].

[15] and [16] have considered the case when the base fluid of the nanofluid itself is a binary
fluid such as salt water in a horizontal layer of a porous medium saturated with the nanofluid.
They have discussed how the theory of double diffusion affects the initiation of convection in
the nanofluid. Using the Galerkin method, the stability boundaries for both non-oscillatory and
oscillatory modes were estimated assuming that the nanofluids model combines the effects of
Brownian motion and thermophoresis and the Darcy model for porous media.

Meanwhile, [1] provided a summary of the characteristics of double-diffusive convection in a
layer of porous media saturated with nanofluid. The linear stability was investigated using the
normal mode technique and the nonlinear analysis was studied using the minimum representa-
tion of the truncated Fourier series analysis involving two terms. The results show that for the
linear analysis, the critical value of the Rayleigh number has been obtained, while the term Nus-
selt number has been given for the nonlinear analysis. In order to address the properties of fluids
with suspended particles, [4, 5] developed the theory ofmicropolar fluids. Analysis of the various
applications of micropolar fluid mechanics was provided by [2, 12] and [18].

[13] investigated the influence of an internal heat source on the initiation of Rayleigh-Bénard
convection in order to develop a control strategy method for double-diffusive convection using
a nanofluid layer. By concentrating on stationary convection, they demonstrated that internal
heat generation causes a positive thermal efficiency while feedback control on the initial stage of
double-diffusive convection causes a positive thermal resistance. Meanwhile, [9] examined the
effect of internal heat generation in the presence of Soret and Dufour effects on the magnetocon-
vection on the double-diffusive nanofluids layer. Using the Galerkin approach, they obtained that
the system becomes stable with the presence of the magnetic field while becoming unstable when
internal heat generation appears.

Rayleigh-Bénard convection’s response to feedback control and double-diffusive coefficients
was examined by [10]. They found that by increasing the value of rotation, the system can be sta-
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bilized by using feedback control, the Dufour parameter, and the solutal Rayleigh number. In the
meantime, the system becomes unstable as the values of the Soret parameter, nanofluids Lewis
number, nanoparticle concentration Rayleigh number, and modified diffusivity ratio rise. A layer
of amicropolar fluid subjected to double-diffusive convectionwas studied in [17], and the authors
pointed out the impact of a non-uniform basic concentration gradient on the convective motion
of this fluid layer. Using linear stability theory they explained in depth the effects of various mi-
cropolar parameters on the onset of convection. However, temperature and density differences
commonly have an impact on convection, causing density variations in the fluid motion and lead-
ing to differences in concentration gradients.

Therefore, the main purpose of this research is to observe the behavior of the onset convection
in double-diffusive micropolar fluids when both cubic temperature gradient and concentration
gradients were considered as a control mechanism for the onset of convection. Three different
velocity boundary combinations, namely Free-Free (f-f), Rigid-Free (r-f), and Rigid-Rigid (r-r)
boundaries, are used to analyze the various types of temperature and concentration profiles. This
problem is an extension of a concept from [17] who only took into account the situation for non-
uniform concentration gradient. Both gradient equations for temperature and concentration are
given in the general form in order to analyze how these parameters affect the systems, as men-
tioned in the linear stability analysis Section 3 (refer to [8]). The influence of several parameters
will also be investigated to see their effect on the stability of the system.

2 Mathematical Problem Formulation

The stability of an infinite horizontal layer of Boussinesq double-diffusive micropolar fluids
of depth d as shown in Figure 1 is the subject of this research. The temperature difference and
species concentration difference of the fluid between the upper and lower plate are represented
by ∆ϑ and∆S.

Figure 1: Model of schematic diagram.

The governing equations for the problem of double-diffusive micropolar fluids is given by the
following equations (refer to: [17]):
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Equation of Mass:
∇ · u = 0. (1)

Linear Momentum Equation:

ρ0

[
∂u

∂t
+ (u · ∇)u

]
= −∇p− ρgk̂ + (2ξ + γ)∇2u+ ξ∇× ω. (2)

Angular Velocity Equation:

ρ0I

[
∂ω

∂t
+ (u · ∇)ω

]
= (λ′ + γ′)∇ (∇ · ω) + γ′∇2ω + ξ (∇× u− 2ω) . (3)

Energy Equation: [
∂ϑ

∂t
+ (u · ∇)ϑ

]
= χ∇2ϑ+

β

ρ0Cv
(∇× ω) · ∇ϑ. (4)

Soluted Concentration Equation: [
∂S

∂t
+ (u · ∇)S

]
= χs∇2S. (5)

Equation of State:
ρ = ρ0 [1− αϑ (ϑ− ϑ0) + αS (S − S0)] , (6)

where u is the velocity, p is the pressure, g is acceleration due to gravity, ω is the angular velocity, I
is themoment of inertia, S is concentration,Cv is specific heat, ρ0 is density of fluid at temperature
ϑ = ϑ0, ρ is the density, αS is the coefficient of concentration expansion, αϑ is the coefficient of
thermal expansion, β is the micropolar heat conduction coefficient, χ is the thermal conductivity,
γ is the shear kinematic viscosity, λ′ and γ′ are the bulk and shear spin-viscosity coefficients, ϑ is
temperature, and ξ is the coupling viscosity coefficient or vortex viscosity. Without the presence
of the vortex viscosity ξ, the bulk and shear spin viscosity λ′, γ′, micropolar heat conduction β,
and concentration S, the equations (1)-(5) can be reduced to the classical problem of Newtonian
fluids.

2.1 Steady state condition

When the fluid is motionless, the basic state of the quiescent fluid is indicated by:

ubs = 0, ωbs = 0, p = pbs(z), ρ = ρbs(z),
dϑbs

dz
= −∆ϑh(z)

d
,

dSbs

dz
= −∆Sg(z)

d
, (7)

where the steady state denotes by the subscript “bs”. ϑbs and Sbs are non-uniform at their origin
in equation (7) while being heated or cooled at the boundary. Equation (7) now are substituted
into equations (1)-(6), the equations governing the steady state are obtained as follows:

dpbs
dz

= −ρ0g,
d2ϑbs

dz2
=

d2Sbs

dz2
= 0 and ρbs = ρ0

[
1− αϑ(ϑbs − ϑ0) + αS(Sbs − S0)

]
. (8)

3 Linear Stability Analysis

Lets the fluid be perturbed in the steady state by infinitesimal thermal perturbation and their
equation is given by:

u = ubs + u′, ρ = ρbs + ρ′, ϑ = ϑbs + ϑ′, p = pbs + p′, ω = ωbs + ω′, S = Sbs + S′, (9)
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where the quantities of infinitesimal perturbations represent by prime. With the assumption that
the principle of exchanges of stability is valid, therefore the current problems only take stationary
convection into account. Now, substituted equation (9) into equations (1)–(6) together with the
steady-state conditions (7), the linearising of the equations (1)-(6) are given in the form:

∇ · u′ = 0, (10)

−∇p′ − ρ′gk̂ + (2ξ + γ)∇2u′ + ξ∇× ω′ = 0, (11)

(λ′ + γ′)∇ (∇ · ω′) + γ′∇2ω′ + ξ (∇× u′ − 2ω′) = 0, (12)

w
∆ϑ

d
h(z) + χ∇2ϑ′ +

β

ρ0Cv

[
∇× ω′ ·

(
−∆ϑ

d
h(z)

)
k̂

]
, (13)

χs∇2S′ − w
∆S

d
g(z) = 0, (14)

ρ′ = −ρ0αϑϑ
′ − ρ0αSS

′. (15)

Equations (10)–(15) are then reduced to dimensionless equations using the definition of the fol-
lowing variables:

(X∗, Y ∗, Z∗) =
(x
d
,
y

d
,
z

d

)
, ∇∗2 = d2∇2, S∗ =

S′

∆S
,

ϑ∗ =
ϑ′

∆ϑ
, w∗ =

w′

χ/d
, Ω∗ =

(∇× ω′)

χ/d3
, u∗ =

u′

χ/d
.

(16)

By substituting Equation (15) into Equation (11) and then performing curl operation twice on the
resulting equation, also taking curl operation once on Equation (12) respectively. Using (16) on
the resulting equations together with the equations (13) and (14), we have

Ra∇2
1ϑ−Rs∇2

1S + (1 +N1)∇4w +N1∇2ΩZ = 0, (17)
N3∇2Ωz −N1∇2w − 2N1ΩZ = 0, (18)

∇2ϑ+ h(Z)(w −N5ΩZ) = 0, (19)
Γ∇2S + wg(Z) = 0, (20)

where

N1 =
ξ

ξ + γ
,

is coupling parameter (0 ≤ N1 ≤ 1), which represents the strength of the coupling between the
rotation of fluid elements and the deformation of the fluid.

N3 =
γ′

ξ + γ
,

is couple stress parameter (0 ≤ N3 ≤ m), which explains the influence of internal rotational or
couple stresses on the material’s mechanical behavior.

N5 =
β

ρ0Cvd2
,
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is micropolar heat conduction parameter (0 ≤ N5 ≤ n), which represents the influence of mi-
crostructural characteristics, like internal rotations and the coupling between thermal and micro-
rotation fields.

Ra =
ρ0αϑg∆ϑd3

(ξ + γ)χ
,

is Rayleigh number, which represents the ratio of the buoyancy force to the dissipative forces
associated with heat transfer and

Rs =
ρ0αSg∆Sd3

(ξ + γ)χ
,

is a solutal Rayleigh number which explains the ratio of the buoyancy-driven force to the diffusive
force associated with concentration gradients.

The asterisk have been dropped for simplicity and ΩZ and w are the Z−component of ω⃗∗ and u⃗∗.

The function h(Z) and g(Z) in the equations (19) and (20) are the non-uniform temperature
gradient and concentration in more general form than the ones considered by [20] and [17]. The
function of h(Z) and g(Z) are defined by (refer to: [8]),

h(Z) = a∗11 + 2a∗22(Z − 1) + 3 ∗ a∗33(Z − 1)2, (21)
g(Z) = b∗11 + 2b∗22(Z − 1) + 3b∗33(Z − 1)3, (22)

where a∗11, a∗22, a∗33, b∗11, b∗22 and b∗33 are non-dimensional constant. The special cases a∗11 = 1,
a∗22 = 0, a∗33 = 0 and a∗11 = 0, a∗22 = −1, a∗33 = 0 recover the linear and inverted parabolic basic
state temperature distributions considered by [20]. Meanwhile, for b∗11 = 1, b∗22 = 0, b∗33 = 0 and
b∗11 = 0, b∗22 = −1, b∗33 = 0 recover the linear and inverted parabolic basic state concentration
distributions consider by [17] respectively.

Let the infinitesimal perturbation of w,ΩZ , ϑ and S be taken to be periodic and which enables
the normal modes solution to be taken in the form:[

w,ΩZ , ϑ, S
]
=

[
W (Z), G1(Z),Θ(Z), S(Z)

]
ei(κxX+κyY ), (23)

where κ2 =
(
κ2
x + κ2

y

)
are wave number of disturbances in X- and Y - directions respectively.

Substitute equation (23) into equations (17)–(20), we have

−RaΘκ2 +Rsκ2S + (1 +N1)(D
2 − κ2)2W +N1(D

2 − κ2)G1 = 0, (24)[
−N3(D

2 − κ2) + 2N1

]
G1 +N1(D

2 − κ2)W = 0, (25)[
(D2 − κ2)

]
Θ+ (W −N5G1)h(Z) = 0, (26)[

Γ(D2 − κ2)
]
S +Wg(Z) = 0, (27)

where D =
d

dZ
, subject to isothermal-permeable no-spin boundary condition as follows:

1. f-f:

W = D2W = G1 = Θ = S = 0, (28)

at Z = 0 and Z = 1.
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2. r-f:

W = DW = G1 = Θ = S = 0 and W = D2W = G1 = Θ = S = 0, (29)

at Z = 0 and Z = 1.

3. r-r:

W = DW = G1 = Θ = S = 0, (30)

at Z = 0 and Z = 1.

Equations (24)–(27) were solved using the single-term Galerkin procedure, subject to the bound-
ary conditions (28)–(30), by determining their eigenvalues. This method was chosen because it is
developed around the idea of employing only local test and trial functions in the form of almost
polynomials. The test and trial functions also span the entire domain and led to higher accuracy
of outcomes. Instead of that, it is economics by staying away from certain matrix manipulation
[7]. This approach also gives reasonable outcomes with the minimum of mathematics because
the first approximation often gives the desired information [14, 6].

By taken the simplest solution for velocity, W and temperature, Θ in form of (refer to [11]):

[W,Θ] =
[
W1(Z),Θ1(Z)

]
sin(π)Z,

subject to isothermal f-f boundary condition, with N1 = 0, N3 = 0 N5 = 0, h(Z) = 1 and S = 0,
equations (24)-(27) reduced to classical Rayleigh-Bénard problem for Newtonian fluids. There-
fore we obtained the eigenvalue of Rayleigh number for Newtonian fluids as follows:

Ra =

(
π2 + κ2

)3
κ2

. (31)

This result recovers the classical results obtained by [3] for cases of isothermal f-f boundary con-
ditions.

In order to find the eigenvalue equation for the Rayleigh number of the Rayleigh-Bénard prob-
lem in double-diffusive micropolar fluids, first we multiply Equation (24) withW , Equation (25)
withG1, Equation (26)withΘ and Equation (27)withC respectively. The resulting equation then
was integrated by parts with respect toZ = 0 andZ = 1. With the boundary conditions (28)–(30)
and taking W = AW1, G1 = BG11, Θ = EΘ1 and S = FS1 where A, B, E and F are constants
and W1, G11, Θ1, and S1 are trial functions, the eigenvalue equation obtained is as follows:

Ra = −


〈
Θ1

(
D2 − κ2

)
Θ1

〉(
h9h3h7 − h6h4h9 − h3h

2
8

)
a2Θ1W1h3

(
h9h1 − h2h8

)
 , (32)

where,

h1 =
〈
W1Θ1h(Z)

〉
, h6 = a2Rs

〈
W1S1

〉
,

h2 = −N5

〈
Θ1G11h(Z)

〉
, h7 = (1 +N1)

〈
W1(D

2 − κ2)2W1

〉
,

h3 = Γ
〈
S1(D

2 − κ2)S1

〉
, h8 = N1

〈
W1(D

2 − κ2)G11

〉
,

h4 =
〈
W1S1g(Z)

〉
, h9 = N3

〈
G11(D

2 − κ2)G11

〉
− 2N1

〈
G2

11

〉
,

h5 = −a2Ra
〈
W1Θ1

〉
,
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where the integration represent by angle bracket ⟨·⟩ is the integrationwith respect toZ fromZ = 0
to Z = 1. A functional Euler-Lagrange equations for an extreme value of Ra is given by Equa-
tion (32). The Ra given in the equation (32) is a generalization of [17] for the cases of h(Z) = 1
for Linear, Parabola, and Inverted Parabola concentration functions. When Rs = 0 we recover
results obtained by [8] for the cases Linear, Cubic 1, and Cubic 2 temperature gradient functions.
The value of critical Rayleigh number Rac and critical wave number κc are obtained using

dRa

dκ
= 0.

4 Results and Discussion

This study aims to examine the effect of cubic temperature gradient, cubic concentration gradi-
ent, and variousmicropolar parametersN1, N3 andN5 on the onset of Rayleigh-Bénard convection
in double-diffusive micropolar fluids. Table 1 presents the trial function for the different types of
boundary conditions for both temperature and concentration.

Table 1: Trial function for different type of boundary conditions.

B.Cs f-f r-f r-r
W1 Z − 2Z3 + Z4 3Z2 − 5Z3 + 2Z4 Z2 − 2Z3 + Z4

Θ1 Z(Z − 1) Z(Z − 1) Z(Z − 1)

S1 Z(Z − 1) Z(Z − 1) Z(Z − 1)

G11 Z(Z − 1) Z(Z − 1) Z(Z − 1)

Table 2 gives the model of reference steady-state for temperature gradient and concentration
gradient.

Table 2: Reference basic-state temperature and concentration gradient.

Model

Reference basic-state
temperature gradient h(Z) a∗11 a∗22 a∗33

Reference basic-state
concentration gradient g(Z) b∗11 b∗22 b∗33

1 Linear 1 0 0
2 Cubic 1 0.34 0 0.66
3 Cubic 2 0 0 1

When h(Z) = 1, the results recovers [17]. Meanwhile, whenRs = 0, the results recover [8] for
linear temperature and concentration gradient cases as shown in Table 3.
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Table 3: Table of critical values of Rayleigh number and waves number for casesRs = 0with h(Z) = 1, N1 = 0.5, N3 = 2, N5 = 1 and
Γ = 0.1.

Current Results [8]

B.Cs Rac κc Rac κc

f-f 1348.5704 2.2354 1348.5704 2.2354
r-f 2293.0478 2.6734 2293.0478 2.6738
r-r 3496.2213 3.1133 3496.2231 3.1133

In this paper, wewill discuss how the value of the solutal Rayleigh numberRswill influence the
value of the critical Rayleigh number,Rac. The graph ofRac versusRs is plotted as Figures 2–4 for
the three types of boundary conditions. Figure 2 represent the behavior of critical Rayleigh num-
ber versus solutal Rayleigh number for cases of linear temperature gradient and all concentration
gradient model. Meanwhile Figure 3 and Figure 4 for the cases of Cubic 1 temperature gradient
and Cubic 2 temperature gradient also for all concentration gradient models respectively. From all
Figures, we can see that increasing the value of the solutal Rayleigh numberRs, decreases the crit-
ical value of critical Rayleigh number Rac for all models of temperature gradient consider in this
study. Meaning that increasing the concentration gradient will influence the variation of density
of the micropolar fluid, and the density becomes denser.

From Figures 2–4 also we discover that the critical Rayleigh number Rac, for cases of Cubic
2 temperature gradient together with Cubic 2 concentration gradient is most stable compared to
Cubic 1 and Linear temperature gradient togetherwith Cubic 1 and Linear concentration gradient.
Out of the three boundaries considered in this study, we found that the r-r boundary is the most
stable, followed by the r-f and f-f boundaries.

Figure 2: Rs vs Rac for cases of linear temperature gradient with N1 = 0.5, N3 = 2, N5 = 1, Γ = 0.1 for Linear, Cubic 1 and Cubic 2
concentration gradient.
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Figure 3: Rs vs Rac for cases of Cubic 1 temperature gradient with N1 = 0.5, N3 = 2, N5 = 1, Γ = 0.1 for Linear, Cubic 1 and Cubic 2
concentration gradient.

Figure 4: Rs vs Rac for cases of Cubic 2 temperature gradient with N1 = 0.5, N3 = 2, N5 = 1, Γ = 0.1 for Linear, Cubic 1 and Cubic 2
concentration gradient.

Figures 5–7 represent the plots of critical Rayleigh number Rac versus coupling parameter
N1 for the cases of Linear (Figure 5), Cubic 1 (Figure 6) and Cubic 2 (Figure 7) temperature
gradient with the different concentration gradient profiles together with r-r, r-f, and f-f boundary
conditions respectively. From the figures, the results show that increasing the value of N1 will
increase the value ofRac for the Linear, Cubic 1, andCubic 2 temperature gradient profile together
with the Linear, Cubic 1, and Cubic 2 concentrations gradient profile. Increasing the values of
N1 indicates that the concentration between micro-elements also increases. The micro-elements
generate a larger portion of the energy to develop gyrational velocity, hence delaying the process
of convection and indirectly stabilizing the system. Out of the three temperature gradient profile,
the results shows that the Cubic 2 temperature gradient together with the Cubic 2 concentration
gradient are the most stable followed by the Cubic 1 and Linear temperature gradient together
with Cubic 1 and Linear concentration gradient. Out of three boundaries, it is observed that r-r
boundaries are the most stable compare to r-f and f-f boundaries as shown in Table 4.
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Table 4: Table of critical values of Rayleigh number for cases Rs = 25 with N1 = 0.5, N3 = 2, N5 = 1 and Γ = 0.1.

Temperature Concentration B.Cs

h(Z) g(Z)
f-f r-f r-r
Rac Rac Rac

Linear
Linear 1012.280 1958.426 3163.852
Cubic 1 1044.920 2017.886 3200.412
Cubic 2 1061.734 2048.517 3219.247

Cubic 1
Linear 1122.281 22466.300 3575.691
Cubic 1 1158.468 2541.176 3617.011
Cubic 2 1177.110 2579.750 3638.297

Cubic 2
Linear 1188.832 2846.577 3832.703
Cubic 1 1227.165 2933.000 3876.993
Cubic 2 1246.912 2977.523 3899.808

Figure 5: N1 vs Rac for cases of linear temperature gradient with Rs = 25, N3 = 2, N5 = 1, Γ = 0.1 for Linear, Cubic 1 and Cubic 2
concentration gradient.

Plots of critical Rayleigh number Rac versus couple stress parameter N3 for the different tem-
perature gradient and concentration gradient profileswith a different type of boundary conditions
shown as in Figure 8 for cases of Linear temperature gradient profile, Figure 9 for cases of Cubic 1
temperature gradient profile and Figure 10 for cases of Cubic 2 temperature gradient profile. From
all plotted figures, it is obtained that the critical Rayleigh numberRac was decreasedwith increas-
ing of N3. The behavior of shear stress in the conservation of linear momentum was influenced
by couple stress in angular momentum equations. This situation caused the micro-rotation of the
fluid particle to decreasewith increasing the couple stress of fluid. Therefore we can conclude that
increasing the value of N3 will destabilize the systems and these results are only valid for small
values of N3. Out of plotted Figures 8–10, the Cubic 2 temperature gradient and concentration
gradient profile with r-r boundaries condition are the most stable compared with others.
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Figure 6: N1 vs Rac for cases of Cubic 1 temperature gradient with Rs = 25, N3 = 2, N5 = 1, Γ = 0.1 for Linear, Cubic 1 and Cubic 2
concentration gradient.

Figure 7: N1 vs Rac for cases of Cubic 2 temperature gradient with Rs = 25, N3 = 2, N5 = 1, Γ = 0.1 for Linear, Cubic 1 and Cubic 2
concentration gradient.

Figure 8: N3 vs Rac for cases of linear temperature gradient with Rs = 25, N1 = 0.5, N5 = 1, Γ = 0.1 for Linear, Cubic 1 and Cubic 2
concentration gradient.
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Figure 9: N3 vs Rac for cases of Cubic 1 temperature gradient with Rs = 25, N1 = 0.5, N5 = 1, Γ = 0.1 for Linear, Cubic 1 and Cubic
2 concentration gradient.

Figure 10: N3 vsRac for cases of Cubic 2 temperature gradient withRs = 25,N1 = 0.5,N5 = 1, Γ = 0.1 for Linear, Cubic 1 and Cubic
2 concentration gradient.

The behavior of critical Rayleigh numberRac is also influenced bymicropolar heat conduction
parameter N5, for the different types of temperature gradient and concentration gradient profiles
with r-r, r-f, and f-f boundary conditions. This behavior was plotted as Figure 11 for the Linear
temperature gradient profile, Figure 12 for the Cubic 1 temperature gradient profile, and Figure 13
for the Cubic 2 temperature gradient profile. Increasing the value of N5 will increase the micro-
elements of the fluid, this situation cause the heat transfer frombottom to topwill reduce, therefore
the density variation of themicropolar fluids becomes increased, hence increasing the value ofRac
and this is true for all plotted figures. Therefore, we can conclude that reducing heat transfer will
help the system be more stable by delaying the process of the onset of convection. Indirectly, N5

will stabilize the systems. From Figures 11–13, it is observed that the Cubic 2 temperature gradient
profile together with the Cubic 2 concentration gradient profile for cases of r-r boundary condition
is most stable compared to others.
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Figure 11: N5 vsRac for cases of linear temperature gradient withRs = 25,N1 = 0.5,N3 = 2, Γ = 0.1 for Linear, Cubic 1 and Cubic 2
concentration gradient.

Figure 12: N5 vsRac for cases of Cubic 1 temperature gradient withRs = 25,N1 = 0.5,N3 = 2, Γ = 0.1 for Linear, Cubic 1 and Cubic
2 concentration gradient.
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Figure 13: N5 vsRac for cases of Cubic 2 temperature gradient withRs = 25,N1 = 0.5,N3 = 2, Γ = 0.1 for Linear, Cubic 1 and Cubic
2 concentration gradient.

For simplification, the effect of temperature and concentration gradient profile together with
parameters N1, N3, N5 and Rs to the investigated system can be summarized in Figure 14. From
the block diagrams, we can see the control strategies consider in this research which are temper-
ature and concentration gradient profiles that influenced parameters N1 and N5 put the systems
in stable condition while for parameters N3 and Rs put the systems in an unstable condition.

Figure 14: Control strategies diagram for the variety of temperature and concentration gradient profile and influenced parameters.
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5 Conclusions

As mentioned in Section 1, the main objective of this study is to investigate the behavior of
the onset of convection in double-diffusive micropolar fluids when both the cubic concentration
gradient profile together with the cubic temperature profile were taken into account as a control
mechanism for the onset of convection. Three different types of velocity boundary conditions
which are r-r, r-f, and f-f were considered in this study. From the results obtained, it can be con-
cluded that:

1. Out of three temperature gradient profiles together with three concentration profiles, we
can conclude that the Cubic 2 profile is the most stable and holds the following inequality
Rac1 < Rac2 < Rac3 respectively.

2. From the three boundary conditions consider in this study, we can conclude that
Raf−f

c < Rar−f
c < Rar−r

c , where the velocity of boundary combinations represents by the
superscripts.

3. The concentration force and buoyancy force reinforce each other by reducing the value of
the critical Rayleigh number while raising the value of the solutal Rayleigh number.

4. The systems will become unstable due to the couple stress parameter N3. Meanwhile, the
system becomes stable due to the coupling parameter N1 and micropolar heat conduction
parameter N5.

5. By selecting the proper non-uniform temperature and concentration gradient profiles, the
onset of the Rayleigh-Bénard convection process is controllable.

6. By enclosing the micron-sized suspended particles, Rayleigh-Bénard convection in double-
diffusive Newtonian fluids can be reduced.
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